José Maciel Rodrigues Júnior,
Karla de Melo Lima,
Arlete Aparecida Martins Coelho Castelo,
Vânia Luiza Deperon Bonato Martins,
Sandra Aparecida dos Santos,
Lucia Helena Faccioli,
Célio Lopes Silva
The DNA vaccines currently under pre-clinical and clinical development may prove to be important tools in combating infectious diseases, such as tuberculosis, for which no safe and effective form of prevention has yet been developed. In recent years, several studies have aimed to develop a DNA vaccine encoding mycobacterial proteins such as antigen 85 (Ag85) and the 65-kDa mycobacterial heat shock protein (hsp65). The latter is protective against virulent infection with Mycobacterium tuberculosis (including multidrugresistant strains). The hsp65 DNA vaccine, currently under clinical evaluation in Brazil for cancer therapy, is able to induce the secretion of Th1 cytokines, such as gamma-interferon, associated with disease control. Furthermore, this vaccine stimulates cytotoxic CD8 and CD4 T-cell clones that can be characterized as memory cells, which are responsible for effective and longlasting immunity against tuberculosis. When used as a therapeutic agent in inoculated mice, the hsp65 DNA vaccine promotes changes in the immunity profile, triggering the secretion of Th1 cytokines and establishing a favorable environment for the elimination of bacilli. The results also demonstrate that the route of administration, as well as the formulation in which the vaccine is administered, fundamentally influence the pattern and duration of the immune response induced. Taking all currently available data into account, we can conclude that a DNA vaccine against tuberculosis could contribute significantly to the control of the disease.
Keywords: Tuberculosis/epidemiology. Vaccines, DNA/therapeutic use. Heat shock proteins. Auto-immunity.