Continuous and bimonthly publication
ISSN (on-line): 1806-3756

Licença Creative Commons
6770
Views
Back to summary
Open Access Peer-Reviewed
Comunicação Breve

Efeito do perfluorocarbono vaporizado sobre o estresse oxidativo no período de isquemia fria durante a preservação pulmonar

Effect of vaporized perfluorocarbon on oxidative stress during the cold ischemia phase of lung graft preservation

Renata Salatti Ferrari1,a, Leonardo Dalla Giacomassa Rocha Thomaz2,b, Lucas Elias Lise Simoneti2,c, Jane Maria Ulbrich1,3,d, Cristiano Feijó Andrade1,3,e

DOI: http://dx.doi.org/10.1590/1806-3713/e20170288

ABSTRACT

Liquid perfluorocarbon (PFC) instillation has been studied experimentally as an adjuvant therapy in the preservation of lung grafts during cold ischemia. The objective of this study was to evaluate whether vaporized PFC is also protective of lung grafts at different cold ischemia times. We performed histological analysis of and measured oxidative stress in the lungs of animals that received only preservation solution with low-potassium dextran (LPD) or vaporized PFC together with LPD. We conclude that vaporized PFC reduces the production of free radicals and the number of pulmonary structural changes resulting from cold ischemia.

Keywords: Ischemia; Reperfusion; Fluorocarbons; Lung transplantation; Oxidative stress.

RESUMO

O perfluorocarbono (PFC) líquido tem sido estudado experimentalmente como uma substância adjuvante na preservação de enxertos pulmonares durante o período de isquemia fria. O objetivo deste estudo foi avaliar se o PFC vaporizado (e não instilado) também atuaria como protetor de enxertos pulmonares em diferentes tempos de isquemia fria. Realizamos análise histológica e dosamos o estresse oxidativo em pulmões de animais que receberam somente uma solução de preservação com low-potassium dextran (LPD, dextrana com baixa concentração de potássio) ou PFC vaporizado associado a LPD. Concluímos que o PFC vaporizado reduziu a produção de radicais livres e provocou menor número de alterações estruturais pulmonares decorrentes do período de isquemia fria que o uso de LPD isoladamente.

Palavras-chave: Isquemia; Reperfusão; Fluorcarbonetos; Transplante de pulmão; Estresse oxidativo.

Diferentes métodos e substâncias têm sido testados experimentalmente para melhorar a preservação pulmonar durante o período de isquemia fria, como o uso de surfactante pulmonar, perfluorocarbono líquido, inibidores do complemento, sulfureto de hidrogênio inalatório, nitritos e óxido nítrico inalatório. (1,2) No entanto, o método de preservação pulmonar para transplante ainda continua sendo a utilização de solução fria de low-potassium dextran (LPD, dextrana com baixa concentração de potássio) por via da artéria pulmonar (perfusão anterógrada) e/ou veias pulmonares (perfusão retrógada), associada ao uso de vasodilatadores pulmonares e armazenamento do pulmão em estado semi-inflado com oxigênio.(2) O uso de PFC vaporizado parece ser uma alternativa interessante na preservação pulmonar para transplante, uma vez que seu uso em estado líquido tem demonstrado proteção aos pulmões transplantados antes e após a reperfusão.(3-5) Os potenciais benefícios do PFC vaporizado na preservação pulmonar seriam sua capacidade de transportar oxigênio e dióxido de carbono e por possuir propriedades anti-inflamatórias e antioxidantes.(6-8) Além disso, na sua forma vaporizada, o PFC é facilmente distribuído por todo o pulmão de uma forma mais uniforme e, sobretudo, não apresenta as dificuldades de ventilação daqueles pulmões encharcados com PFC líquido. Para verificar os efeitos do PFC vaporizado durante a preservação pulmonar utilizamos um modelo animal de isquemia fria para a análise do estresse oxidativo e das alterações histológicas nos pulmões preservados em diferentes períodos de tempo. Este foi um estudo experimental controlado envolvendo ratos Wistar com uma média de peso corporal de 300 g. Todos os animais foram tratados de acordo com o Código Ético da Organização Mundial de Saúde para Experimentação Animal. Os animais foram divididos em dois grupos, subdivididos em quatro grupos cada. Cada subgrupo compreendia seis animais, de acordo com o procedimento cirúrgico: subgrupos PFC + LPD 3h; PFC + LPD 6h; PFC + LPD 12h; e PFC + LPD 24h vs. subgrupos LPD 3h; LPD 6h; LPD 12h; e LPD 24h. Nos quatro subgrupos PFC + LPD, independentemente do tempo de preservação, utilizou-se uma dose de 7 ml/kg de PFC vaporizado em cânula de traqueotomia conectada a um equipamento de anestesia, após o período de reperfusão de 120 min. Os animais foram sacrificados após terem sido anestesiados com cetamina i.p. (100 mg/kg) e xilazina (50 mg/kg). Posteriormente, realizou-se uma laparotomia ventral média. Os pulmões foram removidos e fixados em paraformaldeído a 4% para a análise histológica e armazenados a −80°C para posteriormente quantificar thiobarbituric acid reactive substances (TBARS, substâncias reativas ao ácido tiobarbitúrico) e avaliar a atividade das enzimas antioxidantes superóxido dismutase (SOD) e catalase. Para realizar a análise bioquímica, o tecido pulmonar foi homogeneizado, após o qual os níveis de proteína foram quantificados de acordo com Lowry et al.(9) A medição do TBARS foi realizada conforme estabelecido por Buege e Aust,(10) e a determinação da atividade de SOD foi realizada de acordo com a técnica descrita por Misra e Fridovich.(11) A análise da atividade da catalase foi baseada na mensuração da redução do peróxido de hidrogênio.(12) As amostras para a análise histológica do tecido pulmonar foram coletadas e armazenadas durante 12 h em solução de formaldeído a 10%, transferidas para álcool a 70% e coradas com H&E. O exame anatomopatológico foi realizado por um patologista de forma cegada. Os dados foram analisados utilizando o software estatístico SPSS Statistics, versão 22.0 (IBM Corporation, Armonk, NY, EUA). Utilizou-se ANOVA seguida do teste post hoc de Tukey; no caso de variâncias desiguais ou distribuição anormal, foi realizado o teste não paramétrico de Kruskal-Wallis, seguido do teste U de Mann-Whitney para comparações intergrupos. Em todas as comparações, o nível de significância foi estabelecido em 5%. Os pulmões preservados por 3 e 6 h, utilizando uma dose de 7 ml/kg de PFC vaporizado + LPD, apresentaram um aumento significativo da concentração da SOD quando comparada à da dos subgrupos LPD 3h e LPD 6h, respectivamente. Não verificamos diferenças significativas nos níveis de TBARS e catalase entre esses subgrupos (Figura 1).
 



Na histologia, evidenciamos a presença de infiltrado intersticial, processo inflamatório crônico intersticial e atelectasias nos pulmões dos subgrupos LPD preservados por 3, 6, 12 e 24 h, através da análise dos macrófagos intravasculares. Nos respectivos subgrupos PFC + LPD, observamos apenas a presença de atelectasias, o que demonstra que a utilização de PFC vaporizado reduziu o dano estrutural pulmonar durante os diferentes tempos de isquemia fria (Figura 2).
 



Nossos resultados mostraram que o PFC vaporizado administrado concomitantemente com a ventilação mecânica foi capaz de reduzir o estresse oxidativo no período inicial de isquemia fria em até 6 h de preservação pulmonar, comprovando, então, o seu efeito antioxidante. Achados semelhantes foram obtidos por Forgiarini Junior et al.,(4) que avaliaram o efeito do PFC líquido em um modelo de transplante pulmonar em ratos; naquele estudo, os autores avaliaram o estresse oxidativo em diferentes tempos de isquemia e também após o transplante pulmonar, encontrando um aumento da atividade de SOD mas sem diferenças significativas com relação aos níveis de TBARS.(4) O PFC líquido tem a característica de manutenção da estrutura alveolar, mesmo quando submetido à lesão pulmonar em modelo de isquemia e reperfusão por clampeamento do hilo pulmonar(3) ou em modelo de transplante pulmonar.(4) Forgiarini Junior et al.(4) testaram diferentes doses de PFC líquido e demonstraram que, utilizando uma dose de 7 ml/kg, havia uma melhor manutenção da estrutura alveolar sem rompimento de septos alveolares. Nosso estudo demonstrou que, mesmo em estado de vapor, o PFC apresenta propriedades semelhantes ao PFC líquido na proteção da estrutura alveolar. Apesar dos resultados preliminares do nosso estudo, pelo que sabemos, esta é primeira vez que o PFC vaporizado foi testado como substância adjuvante na preservação pulmonar durante o período de isquemia fria, sugerindo que há proteção da estrutura alveolar e propriedades antioxidativas. Por isso, faz-se a necessidade de estudos mais detalhados em relação ao verdadeiro papel do PFC vaporizado tanto na preservação pulmonar para o transplante como também na fase de reperfusão pós-transplante.

REFERÊNCIAS

1. Cypel M. A new era in lung transplantation: an individualized approach to donor lungs. J Bras Pneumol. 2012;38(6):681-3. https://doi.org/10.1590/S1806-37132012000600001
2. Andrade CF, Kaneda H, Der S, Tsang M, Lodyga M, Chimisso Dos Santos C, et al. Toll-like receptor and cytokine gene expression in the early phase of human lung transplantation. J Heart Lung Transplant. 2006;25(11):1317-23. https://doi.org/10.1016/j.healun.2006.09.017
3. Forgiarini LA Jr, Forgiarini LF, da Rosa DP, Mariano R, Ulbrich JM, Andrade CF. Endobronchial perfluorocarbon administration decreases lung injury in an experimental model of ischemia and reperfusion. J Surg Res. 2013;183(2):835-40. https://doi.org/10.1016/j.jss.2013.01.035
4. Forgiarini Junior LA, Holand AR, Forgiarini LF, da Rosa DP, Marroni NA, Cardoso PF, et al. Endobronchial perfluorocarbon reduces inflammatory activity before and after lung transplantation in an animal experimental model. Mediators Inflamm. 2013;2013:193484. https://doi.org/10.1155/2013/193484
5. Ferrari RS, Andrade CF. Oxidative Stress and Lung Ischemia-Reperfusion Injury. Oxid Med Cell Longev. 2015;2015:590987.
6. Wang X, Zhang J, Li X, Liu Y, Yang H, Zhao X, et al. Sustained improvement of gas exchange and lung mechanics by vaporized perfluorocarbon inhalation in piglet acute lung injury model. Clin Respir J. 2014;8(2):160-6. https://doi.org/10.1111/crj.12053
7. Hübler M, Souders JE, Shade ED, Polissar NL, Schimmel C, Hlastala MP. Effects of vaporized perfluorocarbon on pulmonary blood flow and ventilation/perfusion distribution in a model of acute respiratory distress syndrome. Anesthesiology. 2001;95(6):1414-21. https://doi.org/10.1097/00000542-200112000-00021
8. de Abreu MG, Quelhas AD, Spieth P, Bräuer G, Knels L, Kasper M, et al. Comparative effects of vaporized perfluorohexane and partial liquid ventilation in oleic acid-induced lung injury. Anesthesiology. 2006;104(2):278-89. https://doi.org/10.1097/00000542-200602000-00013
9. LOWRY OH, ROSEBROUGH NJ, FARR AL, RANDALL RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-75.
10. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302-10. https://doi.org/10.1016/S0076-6879(78)52032-6
11. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170-5.
12. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121-6. https://doi.org/10.1016/S0076-6879(84)05016-3

Indexes

Development by:

© All rights reserved 2024 - Jornal Brasileiro de Pneumologia