Delurce Tadeu de Araujo Spada, Manoel Armando Azevedo dos Santos, Elisabete A. Almeida, Marcos Augusto, Maria Idemar Pedrosa Albarral, Fernando Augusto Fiuza de Melo
Background: The appearance of tuberculosis/human immunodeficiency virus co-infection and the growing number of diseases caused by nontuberculous mycobacteria, as well as the confusion that these can cause in relation to emerging multidrug-resistant strains, require more accurate and rapid laboratory results, not only in the isolation of strains but also in their identification.
Objective: A comparative study evaluating a new tool of molecular identification, which uses a genetic probe based on the 16S rDNA sequence of the Mycobacterium tuberculosis gene (Gen-Probe Accuprobe® Gen Probe, Inc.), and the classic methodology.
Method: Fifty-five Mycobacterium strains, isolated from the sputum of patients treated at a tuberculosis reference clinic, were selected for study. Subcultures were performed in three tubes: one submitted to genetic identification, one analyzed through classical tests (production and accumulation of niacin; growth in the Lowenstein-Jensen medium with the inhibitor agents p-nitrobenzoic acid and thiophene-2-carboxylic acid hydrazide added), and one held in reserve.
Results: The probe identified 51 cases as belonging to the M. tuberculosis complex (one associated with M. kansasii) and the other 4 as nontuberculous mycobacteria, later identified as M. kansasii (3) and M. avium (1). Using traditional methods, 47 samples were identified as belonging to the M. tuberculosis complex, 4 were classified as fitting the profile of nontuberculous mycobacteria (in agreement with the genetic probe results), and 4 were unidentified, 1 of which presented the exact characteristics that 2 mycobacterium species have in common.
Conclusion: The benefits of the molecular biology technique justify its implementation and routine use, in combination with classical methods, in a high-traffic clinic where complex cases of tuberculosis are treated.
Keywords: Mycobacterium tuberculosis. Molecular probe techniques.