Fabiano Leichsering Silva, Nicolle Gollo Mazzotti, Marcus Picoral,
Daniella Meirelles Nascimento, Maria Isabel Morgan Martins, Adriane Belló Klein
J Bras Pneumol.2005;31(6):506-510
Objective: To use an experimental model to evaluate the effect of heart failure on oxidative stress in the rat diaphragm. Methods: The model of myocardial infarction was developed through left coronary artery ligation. On day 42 after coronary artery ligation, the animals were killed, after which the diaphragms were collected and homogenized. Oxidative stress was evaluated in diaphragm homogenates through measurement of lipid peroxidation and assays of the activity of antioxidant enzymes, including catalase and glutathione peroxidase (enzymes that reduce hydrogen peroxide to water), as well as superoxide dismutase (an antioxidant enzyme that reduces superoxide anions to hydrogen peroxide). Results: The coronary artery ligation model was found to be effective in causing heart failure. In the animals submitted to coronary artery ligation, the mean infarcted area of the left ventricle was 39%. Lipid peroxidation was 217% greater in the diaphragms of ligated animals than in those of controls. The activity of catalase and glutathione peroxidase was 77% and 20% lower, respectively, in study rats than in control rats. Infarction did not modify superoxide dismutase activity. Conclusion: The results suggest that left coronary artery ligation results in oxidative stress in the diaphragm.
Keywords: Myocardial infarction; Oxidative stress; Congestive heart failure; Antioxidants; Diaphragm; Rats